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Abstract—Amidst the ongoing pandemic, the assessment of
computed tomography (CT) images for COVID-19 presence can
exceed the workload capacity of radiologists. Several studies
addressed this issue by automating COVID-19 classification and
grading from CT images with convolutional neural networks
(CNNs). Many of these studies reported initial results of algo-
rithms that were assembled from commonly used components.
However, the choice of the components of these algorithms was
often pragmatic rather than systematic and systems were not
compared to each other across papers in a fair manner. We
systematically investigated the effectiveness of using 3D CNNs
instead of 2D CNNs for seven commonly used architectures,
including DenseNet, Inception, and ResNet variants. For the
architecture that performed best, we furthermore investigated
the effect of initializing the network with pre-trained weights,
providing automatically computed lesion maps as additional net-
work input, and predicting a continuous instead of a categorical
output. A 3D DenseNet-201 with these components achieved an
area under the receiver operating characteristic curve (AUC)
of 0.930 on our test set of 105 CT scans and an AUC of
0.919 on a publicly available set of 742 CT scans, a substantial
improvement in comparison with a previously published 2D CNN.
This paper provides insights into the performance benefits of
various components for COVID-19 classification and grading
systems. We have created a challenge on grand-challenge.org to
allow for a fair comparison between the results of this and future
research.

Impact Statement—Applied artificial intelligence (AI) research
focuses disproportionately on novel architecture modifications
that do not necessarily generalize to other datasets, while neglect-
ing systematic comparisons between commonly used algorithm
components. This inhibits the deployment of AI for real-world
applications. For automatic COVID-19 grading specifically, at-
tention for compatibility of AI with clinical workflow is lacking.
This paper presents a systematic investigation of COVID-19
grading algorithm components using a large publicly available
dataset. The results are published in an online challenge. These
contributions speed up the development of AI applications for
COVID-19 grading by establishing insights into the components
of such applications and by allowing applications produced by
future research to be compared in a fair manner. The adherence
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to a standardized COVID-19 grading system may increase the
compatibility between AI and clinical workflow. Altogether, this
work may increase the efficiency and accuracy of radiologists
when reading CT scans during this pandemic.

Index Terms—3D convolutional neural network, CO-RADS,
COVID-19, deep learning, medical imaging.

I. INTRODUCTION

IMAGING of COVID-19 with chest computed tomography
(CT) has been found to be helpful for diagnosis of this

disease in the current pandemic [1]. With the aim to reduce the
workload of radiologists, various machine learning techniques
have been proposed to automatically grade and classify the
presence of COVID-19 in CT images [2]–[23]. Automatic
COVID-19 classification methods have already been deployed
in several medical centers [8].

By far the most common technique for automatic COVID-
19 classification from CT images is the Convolutional Neural
Network (CNN) [24], [25], which is the current state-of-the-
art for image classification [26]. The works that use this
approach can be divided into those that use 2D CNNs [2],
[6], [7], [11], [13], [15], [18]–[20], [22] and those that use
3D CNNs [4], [9], [10], [12]–[14], [16], [17], [23]. While
3D CNNs are directly capable of exploiting 3D information
present in CT volumes, 2D CNNs can only indirectly use 3D
information by aggregating their output for individual slices of
the image to produce an image level prediction. 3D CNNs are
typically more memory intensive than 2D CNNs, but Graphics
Processing Units (GPUs) with sufficient memory to train 3D
models are becoming increasingly available. Moreover, radi-
ologists are specifically instructed to take 3D information into
account by inspecting different orthogonal views for assessing
the suspicion of COVID-19 in CT scans [27]. This indicates
that 3D information is essential for radiologists in assessing
the patterns indicative for COVID-19. Additionally, the slice
thickness of CT scans are increasingly becoming smaller [28]
so that the scans contain more detailed 3D information. We
therefore hypothesize that 3D CNNs are more suitable for
COVID-19 classification from CT scans than 2D CNNs.

A major issue that inhibits the utilization of artificial
intelligence in real-world applications, such as COVID-19
diagnosis from CT, is the excessive focus of research on
novel architectures, while scientifically sound comparisons and
proper evaluations on external datasets are lacking. Often,
small additions and adaptations to model architectures for
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Fig. 1. Schematic representation of the different components used for CO-RADS grading from CT scans using convolutional neural networks in patients
suspected with COVID-19. This processing pipeline was used in all experiments of this work. (a) The input CT scan is fed into a lesion segmentation
network. The CT and the lesion segmentation are used as separate input channels to the classification network as described in Section III-C1. In one of the
ablation study experiments, this lesion segmentation input was left out. (b) We compared a variety of 3D (top) and 2D architectures (bottom) as described in
Section III-C2. The 3D architectures take as input the full volume. The 2D architectures use individual slices as input. (c) We compared a continuous output
to a categorical output in the ablation study. Section III-C4 describes the continuous output in detail. The dashed line indicates that the categorical output
replaces the continuous output in one of the models in the ablation study and all models in the architecture search, but it is not incorporated in the main
approach.

incremental improvements on specific datasets are proposed
that do not generalize well to other datasets. This issue is
increasingly being recognized and simple baselines have been
proposed which perform comparably to or better than over-
engineered solutions [29], [30].

The goal of this paper is therefore not to introduce novel
architectural tweaks, but instead to perform a comparative
study that evaluates existing approaches. To indicate the gen-
eralization capabilities of automatic COVID-19 classification
systems, some methods have been validated on data from dif-
ferent centers than the data that were used for training [4], [14].
Also, the same validation methods, such as receiver operating
characteristic (ROC) curves and the area under the ROC curve
(AUC), have been reported across different studies [2], [4],
[6]–[10], [12]–[15], [18]–[20], [22], [23]. However, since each
study used different datasets for training and for validation, the
need for fair, direct comparisons of the performance of these
algorithms remains unsatisfied. Recently, the “CT images and
clinical features for COVID-19” (iCTCF) dataset was made
publicly available [31], enabling a fair comparison of COVID-
19 classification methods.

This paper compares a variety of 2D and 3D CNN architec-
tures for COVID-19 classification. We trained and evaluated
the approaches on the same internal dataset. Moreover, in an
ablation study, we investigated performance changes due to 1)
using transfer learning for 2D and 3D COVID-19 classification
models, 2) using prior information in the form of COVID-19
related lesion segmentations as additional input to the network,
3) replacing the categorical output with a continuous output.

We furthermore created a public challenge [32] for eval-

uating and comparing different COVID-19 classification al-
gorithms. Algorithms can be submitted to the challenge as
Docker containers and are evaluated on the iCTCF dataset
that we used in this paper. This allows their performance to
be compared to the methods presented in this paper, as well as
to other COVID-19 grading and classification algorithms that
are submitted to the challenge.

II. BACKGROUND

3D CNNs were initially proposed for processing video data
[25], where the third dimension of the convolutional layers
dealt with the temporal dimension. In later works, 3D CNN
architectures were derived from 2D CNN architectures by
expanding the 2D filters into 3D [33]. Methods based on
these inflated 3D CNNs, in particular the Inflated Inception-
v1 (I3D) model, have recently been successfully employed for
lung nodule detection and scan-level classification tasks from
thorax CT scans [34], [35].

The large majority of the architectures used for COVID-
19 classification from CT scans in previous works [2], [4]–
[10], [12], [14]–[19], [19], [20], [22], [23], [36] are heavily
or completely based on the ResNet [37], DenseNet [38], or
Inception [39] architecture families. Especially ResNet archi-
tectures have been used frequently [2], [6], [8]–[10], [15]–
[20], [36]. Some works did not use a full ResNet architecture,
but did incorporate residual blocks into their model [5],
[22]. Architectures from the DenseNet [4], [19], [23] and
Inception [7], [14] families have been used less frequently.
Other architectures such as VGG-19 [40], Inception-ResNet-
v2 [41], NASNet [42], and EfficientNet [43] have also been
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used in research for COVID-19 classification from CT scans
[36], [44]–[47]. Due to the lack of standardized data for testing
across different works, previous research does not identify
which architecture produces the best performance for COVID-
19 classification from CT.

Fine-tuning is a widely used technique in research on deep
learning in medical imaging [48] and COVID-19 classification
specifically [49]. With fine-tuning, models are initialized with
pre-trained weights from models trained on a different task or
dataset. They are commonly pre-trained on the ImageNet [50]
dataset that contains a large variety of 2D natural images.
Afterwards, the models are trained for the task at hand.
Pre-training speeds up training and can offer performance
gains for large models [48]. It has been used in several 2D
CNN COVID-19 classification methods [2], [6], [7], [18],
[20]. Pre-trained weights have also been used for 3D CNN-
based methods. Wang et al. [4] pre-trained their model for
COVID-19 classification on a large number of CT scans from
lung cancer patients. Inflated 3D CNNs can conveniently be
initialized by inflating 2D weights. 2D weights have been used
to pre-train I3D models for video classification [33] and chest
CT classification [34] tasks.

Before presenting CT images to the CNN, they are often
pre-processed by extracting the lung region using lung or lobe
segmentation algorithms. These lung regions are then used
either for cropping around and centering to the lungs [4], [6],
[14], [16], [18] and/or by suppressing non-lung tissue [2],
[4], [6], [8]–[10], [12], [15], [17]. Yang et al. [19] used a
lung segmentation as an additional input channel and used
lesion masks as extra information by training their model
to perform lesion segmentation and COVID-19 classification
simultaneously. Lessmann et al. [14] also added a lesion
segmentation to the input of their model.

Most studies on automated detection of COVID-19 employ
a categorical classification output format that uses a softmax or
sigmoid activation [49]. Previous works have trained models
to discern between COVID-19 positive and negative patients
[3], [5], [6], [12], [15], [16], [18]–[20], [22], [23], COVID-19
positive patients and patients with other types of pneumonia
[4], [7], [9], and between all three [2], [10], [17]. In this work,
we followed Lessmann et al. [14] and trained our models to
produce CO-RADS [27] scores on chest CT scans of suspected
COVID-19 patients. The CO-RADS score denotes the suspi-
cion of COVID-19 on a scale from 1 to 5 and was developed
to standardize reporting of CT scans of patients suspected with
COVID-19 [27]. Scoring systems, like CO-RADS, have been
advocated for better communication between radiologists and
other healthcare providers [14], [27].

III. METHODOLOGY

A. Data
1) Training and internal test data: The internal dataset

contained CT scans from consecutive patients who presented
at the emergency wards of the Radboud University Medical
Center, the Netherlands in March, April and May 2020 and
were referred for CT imaging because of moderate to severe
COVID-19 suspicion. The retrospective and anonymous col-
lection of this data was approved by the ethical review board

TABLE I
NUMBER OF CT IMAGES IN INTERNAL DATASET.

CO-RADS

1 2 3 4 5 Total Neg Pos

Development set
Training 253 71 78 37 73 512 324 188
Validation 81 24 26 11 23 165 105 60

Internal test set 20 10 19 17 39 105 30 75

Total 354 105 123 65 135 782 459 323

TABLE II
NUMBER OF CT IMAGES IN EXTERNAL DATASET.

Grade [13]

Control Mild Regular Severe Critically ill Total Neg Pos

207 23 363 117 32 742 207 535

of Radboudumc (CMO2016-3045, Project 20027) prior to the
study. Further details such as imaging parameters can be found
elsewhere [14].

CO-RADS scores were reported by a radiologist as part of
routine interpretation of the scans. CO-RADS 1 was used for
normal or non-infectious etiologies, having a very low level of
suspicion. CO-RADS 2 was used if the CT-scan was typical
for other infections than COVID-19, indicating a low level of
COVID-19 suspicion. CO-RADS 3 implies equivocal findings
and features compatible with COVID-19, but characteristics of
other diseases are also found. CO-RADS 4 and 5 indicate a
high and very high level of COVID-19 suspicion, respectively.

We randomly split the dataset into a development set with
616 patients and an internal test set of 105 patients. The
patients in the development set were split into 75% for training
and 25% for validation using data stratification based on the
CO-RADS scores. The distribution of CO-RADS scores over
the different splits is displayed in Table I. All data splits were
made such that all scans from a patient with multiple visits
ended up in the same split.

2) External test data: For external evaluation, we used the
publicly available CT images and clinical features for COVID-
19 dataset (iCTCF) dataset [13], [31]. Since we focused on
comparing architectures for CT image processing for COVID-
19 classification, we did not incorporate the clinical features
from this dataset into the input for our models. In iCTCF,
patients were categorized with a Chinese grading system that
distinguishes the classes as Control, Mild, Regular, Severe,
Critically ill and Suspected. Since there was no etiological
evidence available for the presence of COVID-19 in Suspected
cases [13], we did not use them for testing our models. The
distribution of the other classes is displayed in Table II. The
grading system uses etiological laboratory confirmation and
other factors such as clinical features and CT imaging [13].
The control cases include both healthy patients and patients
with community acquired pneumonia. Most of the iCTCF data
has been made publicly available, but some CT scans were not
available at the time of conducting this study. We validated our
models with all available data from the first iCTCF cohort for
which etiological evidence for the presence of COVID-19 was
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available [31].

B. 2D and 3D architectures

We compared the performance of a variety of popular 2D
and 3D CNN architectures for the task of COVID-19 classi-
fication from CT. More specifically, we compared vanilla 2D
and 3D versions of DenseNet-121, DenseNet-169, DenseNet-
201, Inception-v1, ResNet-18, ResNet-34, and ResNet-50.
Section II describes previous works that have used many of
these architectures.

Since we used scan-level labels for training and testing
these models, the 2D architectures required the integration of
a slice-wise reduction step, while the 3D architecture did not.
For the 2D architectures, we therefore integrated the slice-
wise reduction step presented by Li et al. [2]. First, the 2D
CNN extracts features of individual axial slices. A global max
pooling step reduces these features to a 1D vector, to which a
fully connected layer is applied with an output size equal to
the number of classes.

C. Ablation study

We investigated whether additional model components had
an effect on COVID-19 classification performance in an abla-
tion study. Fig. 1 shows a summary of the processing pipeline
that was used.

Since performing the ablation study for all 2D and 3D
architectures would require a large quantity of computational
resources, the ablation study was instead performed with only
the best performing architecture in terms of quadratic weighted
kappa (QWK).

1) Lesion map as prior information: To aid the model in lo-
calizing COVID-19 related parenchymal lesions, we provided
a lesion segmentation map as additional input in a separate
input channel. More specifically, the CT image was fed into
the first input channel, the lesion segmentation into the second
channel, and the third channel was presented with zeros. When
training models without the additional lesion segmentation
input, the CT image was fed into all three input channels.

A 3D nnU-Net [29] trained by Lessmann et al. [14], which
segments ground-glass opacities (GGOs) and consolidations,
provided the lesion segmentations. GGOs and consolidations
are biomarkers with major importance in diagnosing COVID-
19 [27].

2) Dimensionality: Since various components were added
to the models in the ablation study, we trained both the 2D and
3D variants of the best performing architecture. This allows
for an analysis of the performance difference solely due to
the dimensionality of the model in our complete processing
pipeline.

3) Pre-training: We investigated the performance changes
due to pre-training on a natural image classification task.
The 2D models were initialized with weights pre-trained on
ImageNet. The 3D models were initialized with the same
weights by inflating the pre-trained 2D convolution kernels
to 3D.

4) Continuous output: The standard output format of CNNs
used for categorical classification does not capture the ordinal
nature of the CO-RADS scoring system. Furthermore, al-
though the CO-RADS scoring system allows for a higher level
of interpretability than a binary system, the fact that a CO-
RADS suspicion score of 3 indicates that it is unclear whether
COVID-19 is present makes it difficult to decide on the onset
of the positive class for the predicted scores in ROC analyses.
For these reasons, we considered the CO-RADS classification
to be a regression task. Hence, the model had one output
node that was forced to the range (0, 1) using the sigmoid
function. CO-RADS scores were mapped to target values in
the range [0, 1] with a uniform spacing between CO-RADS
classes such that CO-RADS scores of 1 and 5 were assigned
target values of 0 and 1, respectively. As the network had one
output node, binary cross-entropy was used as loss function.
With this method, unlike a standard categorical approach with
a softmax layer and categorical cross-entropy loss, predictions
that are further off from the target are penalized more heavily
than predictions that are closer. To obtain a CO-RADS score
during inference, the sigmoid output was multiplied by 4,
rounded to the nearest integer and added to 1. De Vente et
al. [51] explored this approach for prostate cancer grading
and found that it outperformed other regression and categorical
output methods.

D. Pre-processing

The CT scans were clipped between -1100 and 300
Hounsfield units, normalized between 0 and 1, and resampled
to a voxel spacing of 1.5 mm3 using linear interpolation. The
scans were further pre-processed using a lung segmentation
algorithm that was trained on data from patients with and
without COVID-19 [52]. More specifically, any slices with
a distance of 10 mm or more to the lung mask were discarded
and the remaining slices were cropped to 240 × 240 pixels
around the center of the mask. Following previous research
with I3D models [33]–[35], we trained our models with a fixed
3D input size. To achieve this without adding extra slices that
do not contain information regarding the presence of COVID-
19, we uniformly sampled 128 axial slices along the z-axis.

E. Training

We trained all networks with a batch size of 2, the Adam
optimizer with β1 = 0.9, β2 = 0.999, and a learning rate
of 10−4. Data augmentation consisted of random zooming
between -20% and +20%, rotation between -15% and +15%,
shearing between -10% and +10% and elastic deformations
in the axial plane, translation between -2 and +2 voxels in
the z-direction, -20 and +20 voxels in both the x- and y-
direction, and additive Gaussian noise with a mean of 0 and a
standard deviation between between 0 and 0.01 (after intensity
normalization between 0 and 1). To correct for the class
imbalance, we monitored the performance on the validation
data in the development set during training with balanced
samples based on the distribution of CO-RADS classes in
the training set. We used early stopping with a patience of
10 000 training batches and the QWK on the validation set
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for the stopping criterion. Gradient checkpointing [53] reduces
GPU memory requirements for training deep neural networks
without affecting performance. This technique was used when
necessary to enable a batch size of 2 for the 2D models.

To rule out the possibility that performance differences
between the 3D and 2D approach were due to other factors
such as pre-processing or data augmentation, we kept all
hyperparameters the same during training.

Each model was trained on a single GPU, using NVIDIA
GeForce GTX TITAN X, GeForce GTX 1080, GeForce GTX
1080 Ti, GeForce RTX 2080 Ti, TITAN Xp, and A100 SXM4
cards.

F. Ensembling

The models were sensitive to the randomness of the training
process introduced by initialization of weights without pre-
training, sample selection, and data augmentation. In order
to enable stable comparisons, we obtained ensembles by
training 10 instances of the same model with different random
seeds. The ensemble output was obtained by simply taking
the mean of the individual model outputs. For categorical
model ensembles, the output was the mean of the probability
output vectors of the individual models. All results presented
in Section IV were obtained from ensembles unless stated
otherwise.

G. Evaluation

We evaluated the CO-RADS scoring performance using the
QWK score. This measure accounts for the ordinal nature of
the CO-RADS score by weighting mismatches between true
and predicted labels differently based on the magnitude of the
error. Following previous works on COVID-19 classification
and grading [2], [4], [6]–[10], [12]–[14], diagnostic perfor-
mance was evaluated using the AUC and ROC curves.

We calculated 95% confidence intervals (CIs) with non-
parametric bootstrapping and 1000 iterations [54]. Statisti-
cal significance was computed with the same bootstrapping
method [55].

The AUCs that our models achieved on the external test
set are additionally listed on the Grand Challenge platform
[32] to allow for a direct comparison between our and future
COVID-19 grading and classification solutions.

Inference duration was calculated on the same machine for
each architecture, using a GeForce RTX 2080 Ti card. The
reported durations were averaged over 50 forward passes of a
batch with one sample.

IV. RESULTS

A. Architecture selection

Fig. 2 shows the QWK and AUC for the different 2D
and 3D architectures. Table III shows the number of train-
able parameters, single-model inference time for one sample
and FLOP count for each architecture. All 2D architectures
were outperformed by their 3D counterparts both in terms of
QWK and AUC. The 3D DenseNet-201 architecture performed
best in terms of QWK, followed by the 3D Inception-v1

-

Fig. 2. Performance of 2D and 3D CNN architectures on the internal test
set for the task of CO-RADS grading from CT images is shown in QWK
and AUC, respectively. The error bars indicate the 95% CIs. The AUC was
computed with CO-RADS 1-2 as the negative class (30 scans) and CO-RADS
3-5 as the positive class (75 scans).

architecture. In terms of AUC, the Densenet-169 obtained
the best performance, again followed by the 3D Inception-v1
architecture.

In the architecture selection, on average, training of the in-
dividual 3D models required approximately 26 700 iterations,
while it required about 29 800 iterations for the 2D models.

Since the QWK takes into account the ordinal nature of the
CO-RADS score, this metric was used to select the architecture

Fig. 3. Comparison of 2D and 3D Densenet-201 models and ablation study
with this architecture for the task of CO-RADS grading from CT images. The
analysis was performed on the internal test set. The error bars indicate the
95% CIs. The AUC was computed with CO-RADS 1-2 as the negative class
(30 scans) and CO-RADS 3-5 as the positive class (75 scans).
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(a)

(b)

(c)

Fig. 4. Example input-output pairs for the task of CO-RADS grading on the internal test set for the trained DenseNet-201 ensembles. Input examples are
shown on the left. Top row: Coronal slices of an input CT scan. Bottom row: Lung segmentation used for centering and cropping are displayed with colored
overlays. Delineations of the lesion masks that were used as a separate input channel are depicted as black lines. Output examples of the ensembles (wide,
light bars) as well as the individual models these ensembles are composed of (narrow, dark bars) are shown on the right. (a) Radiology report: ”GGO and
consolidations especially lower lobes and posterior. Has had prior lung carcinoma. COVID-19 is probable, but other infection intrapulmonal is also possible.”
(b) Radiology report: ”COVID-19 not probable, but also not ruled out. Known post-traumatic thorax, persistent pleura fluid, slice pneumothorax. Small
amount of GGO and consolidation (left). Some pneumonia at thorax trauma, post-traumatic deviations.” (c) Consolidation and GGO in all lobes. According
to radiologist: ”Very suggestive for COVID. Also positive PCR. Proven comorbidity.”

to execute the ablation study with. In the rest of this section,
we refer to the 3D DenseNet-201 ensemble as the 3D model
and to the 2D Densenet-201 ensemble as the 2D model.

B. 2D vs. 3D CNNs

On the internal dataset, both the AUC and the QWK scores
were significantly higher for the full 3D model (with transfer
learning, lesion maps and continuous output) than for the full
2D model (p = .006 for AUC and p = .007 for QWK).
Figures 3 and 6 show the corresponding CIs and ROC analyses
respectively. Fig. 4 shows prediction examples from the full

3D, full 2D and ablated 3D models in blue, yellow, and black
respectively.

We also trained an ensemble with the COVNet pipeline from
Li et al. [2], which contains a ResNet-50 backbone that was
pre-trained on ImageNet. With COVNet, we obtained a lower
performance on the internal test set than when we applied the
3D model in our own pipeline. COVNet obtained a QWK of
0.567 (95% CI: 0.411-0.703, p = .004) and a lower AUC of
0.828 (95% CI: 0.741-0.906, p = .017) Our 2D model also
outperformed COVNet in terms of both the QWK (p = .074)
and AUC (p = .179).

Fig. 5 shows confusion matrices for the two dimensionali-
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TABLE III
ARCHITECTURE PROPERTIES

Dim. Architecture Parameter Inference time FLOP count
count (×106) (ms) (×1011)

DenseNet-121 6.88 151.09 ± 8.76 8.43
DenseNet-169 12.33 255.21 ± 17.47 9.93
DenseNet-201 17.87 326.30 ± 3.81 12.70

2D Inception-v1 5.59 40.92 ± 10.16 4.47
ResNet-18 11.17 8.95 ± 1.25 5.52
ResNet-34 21.27 13.53 ± 1.42 11.06
ResNet-50 23.47 35.91 ± 10.50 12.39

DenseNet-121 11.24 25.07 ± 8.49 10.88
DenseNet-169 18.54 31.49 ± 11.48 11.30
DenseNet-201 25.33 38.48 ± 15.65 12.14

3D Inception-v1 12.29 36.74 ± 16.75 5.13
ResNet-18 33.21 28.33 ± 31.31 6.08
ResNet-34 63.52 22.56 ± 14.37 9.29
ResNet-50 46.21 31.09 ± 8.49 7.39

ties. For 13 scans, the full 3D approach had predictions that
were more than one CO-RADS category off. For the full 2D
approach this was the case for 19 scans. Furthermore, the full
3D approach and 2D approach both had two cases that were
further off than 2 categories.

C. Ablation study

The results of an ablation study to investigate the effect of
each of the additional components added to the 3D CNN are
shown in Fig. 3. The 3D model without ablations obtained an
AUC of 0.930 (95% CI: 0.872-0.971) and a QWK of 0.785
(95% CI: 0.705-0.852). Removing any of the additions had
a smaller effect on these performance metrics than changing
the dimensionality of the architecture to 2D. Removing pre-
training reduced the QWK to 0.770 (95% CI: 0.682-0.789, p =
.278), but increased the AUC to 0.932 (95% CI: 0.857-0.977,
p = .428). When the lesion segmentation input was removed
from the model, the QWK was increased to 0.812 (95% CI:
0.738-0.875, p = .091) and the AUC was reduced to 0.920
(95% CI: 0.859-0.969, p = .292). Replacing the regression
approach with a categorical target had a negative effect on
both metrics, reducing the QWK to 0.799 (95% CI: 0.680-
0.863, p = .421) and the AUC to 0.919 (95% CI: 0.868-0.964,

Fig. 5. Confusion matrices for CO-RADS grading of the 2D and 3D
DenseNet-201 model predictions on the internal test set. These models were
trained with transfer learning, lesion maps and produced continuous output.
The true label reference is from the radiology report. Cells contain the number
of CT scans.

Fig. 6. ROC analysis for the 2D and 3D Densenet-201 models on the internal
test set from Radboudumc (105 CT scans) for the task of CO-RADS grading.
The analysis was performed with CO-RADS 1 and 2 as the negative class (30
scans) and CO-RADS 3-5 as the positive class (75 scans). It was performed
for the full 2D and 3D models trained with transfer learning, lesion maps and
continuous output.

Fig. 7. ROC analysis for the 2D and 3D Densenet-201 models on the external
iCTCF test set (742 CT scans) for the task of COVID-19 classification. The
analysis was performed with 207 COVID-19 negative (Control) cases and 535
positive (Mild, Regular, Severe, Critically ill) cases.

p = .324). Fig. 4 shows prediction examples from the ablation
study models in black.

The 3D model required 31 550 iterations for training on
average. The 2D model, the network without pre-training, and
the model without categorical output all required less iterations
(25 650, 31 000 and 22 450, respectively). The model without
lesion input required more iterations (32 750).

D. External evaluation

Fig. 7 shows the ROC curves of the full 3D and the full 2D
model for the external iCTCF test set.
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The 3D approach obtained an AUC of 0.919 (95% CI:
0.898-0.938) and outperformed the 2D approach that obtained
an AUC of 0.915 (95% CI: 0.893-0.934, p = .215).

E. Lesion segmentation model

For a single patch the lesion segmentation model inference
time was 178.66 ms ± 14.56 ms, using 9.41 × 1011 FLOPs.
The CT scans in the test set contained 12.8 patches on average.
The model had 29.69 × 106 parameters. Performance metrics
for this model were reported by Lessmann et al. [14].

V. DISCUSSION

In this paper, we identified and tested components of CNN
based automated COVID-19 grading models. More specifi-
cally, we investigated how the performance of such models
is affected by using different 2D and 3D CNN architectures,
adopting pre-trained weights, using automatically computed
lesion maps as additional network input, and predicting a con-
tinuous output instead of a categorical output. We evaluated all
models with the same datasets to allow for a fair comparison
between models.

Based on the architectures used in earlier automated
COVID-19 classification research, we selected and compared
the performance of the 2D and 3D variants of 7 CNN archi-
tectures for this task. We found that for all architecture types,
the 2D models were outperformed by their 3D counterparts.
The best performing model was a 3D DenseNet-201. In the
rest of this section, we refer to the 3D DenseNet-201 as the
3D model and to the 2D Densenet-201 as the 2D model.

The full 3D model (with transfer learning, lesion maps and
continuous output) outperformed the full 2D model in terms
of AUC and QWK score on the internal test set for COVID-19
classification and CO-RADS grading.

We compared our 2D model with COVNet, an architecture
previously used in a similar COVID-19 classification task
in CT [2], for which the authors reported an AUC of 0.96
for differentiating between COVID-19 positive and negative
patients. The substantial difference between this result and our
observations with COVNet illustrates the importance of using
the same dataset when comparing different approaches.

We also observed a better diagnostic performance for
COVID-19 classification by the 3D model on the external test
set, although this performance increase was not statistically
significant for a significance level of 0.05. AUC was 0.919
for the full 3D model, while it was 0.915 for the full 2D
model. Ning et al. [13] developed a 2D model with slice-level
annotations indicating if the slice was COVID-19 positive,
negative or non-informative. Using a superset of the external
set used in this paper for evaluation an AUC of 0.919 was
obtained, which is the same as the AUC of our 3D model,
even though our 3D model was trained with weaker labels and
on data from a different population. This further emphasizes
the importance of using 3D rather than 2D models.

The internal test set was comprised of data from the same
population as the data the model was trained on, while the
external test set was comprised of data from a different
population. For the full 2D model, a lower AUC was obtained

on the internal test set than on the external test set. This
difference might be due to population differences between the
internal and external test set, or due to the different definitions
of the positive class, which were presence of COVID-19 and
high suspicion of COVID-19 for the internal and external test
sets respectively.

On the external test set, the full 3D model outperformed
the full 2D model by a smaller margin in terms of AUC than
on the internal dataset. This difference could be partly due
to the different definitions of the positive class. However, we
also found that it partly arises from the larger overall slice
thickness in the external test set. All scans in the internal test
set had a slice thickness of 0.5 mm. In contrast, 207 scans
(40 COVID-19 positive, 167 negative scans) in the external
test set had a slice thickness larger than 1.5 mm, which was
the input resolution in our training and testing pipeline. When
evaluating only on these scans, we obtained an AUC of 0.885
(95% CI: 0.835-0.931) for the full 3D model and an AUC
of 0.891 (95% CI: 0.843-0.932) for the full 2D model. The
external test set contained 535 scans (167 COVID-19 positive,
368 negative) with a slice thickness smaller than or equal to
1.5 mm. On these scans we obtained an AUC of 0.926 (95%
CI: 0.902-0.947) for the full 3D model and an AUC of 0.918
(95% CI: 0.892-0.941) for the full 2D model. The performance
of both models is lower for scans with a large slice thickness,
but this effect is more apparent for the 3D model. Taking into
account the increasingly smaller slice thickness of CT scans
[28], this observation further supports our hypothesis that 3D
models are better suited for COVID-19 grading applications
than 2D models.

A possible explanation for why adding the extra dimension
to the convolutions improves the performance is that it allows
the CNN to take into account the 3D structure and full volume
of individual lesions. This explanation is in line with the fact
that radiologists typically use both the axial and coronal views
to visualize the spread of COVID-19 related lesions across the
lungs in CT scans, such as GGOs [27].

We could not directly compare the CO-RADS classification
performance on the external set, since CO-RADS labels were
not available. Moreover, the CO-RADS grading cannot be di-
rectly translated to the system used in the iCTCF dataset, since
the former measures the probability of COVID-19 presence,
while the latter quantifies the severity of the disease.

The ablation study on the internal test set showed that the
further additions to the network and training procedure did
not have a significant effect on the performance. Regardless
of performance increases, using a continuous output removes
the disadvantage of having to decide on the onset of the
positive class for the predicted CO-RADS scores. Adding
lesion maps as input and using inflated ImageNet weights for
pre-training might both be ineffective for 3D automated CNN
based COVID-19 grading methods.

The full 2D DenseNet-201 model obtained a better perfor-
mance than the 2D DenseNet-201 model without pre-training,
additional lesion map input, and continuous output. This
indicates that some of these additional components positively
affected the performance of the 2D model. However, even with
all additional components, it was still outperformed by the
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vanilla 3D DenseNet-201.
We did not use clinical features available for the external

dataset as input to the models trained in this work, since
the main goal of this paper was to demonstrate the effect on
performance of different COVID-19 grading and classification
algorithm components.

VI. CONCLUSION AND FUTURE WORK

We compared a variety of 2D and 3D Convolutional Neural
Network (CNN) architectures for COVID-19 classification
from computed tomography scans and found that for all
architectures considered, the 3D variants outperformed their
2D counterparts. We investigated how the performances of
the best performing architecture and its 2D counterpart were
affected by including COVID-19 related lesion segmentations
as additional input, using pre-trained weights, and replacing
the categorical output with a scalar continuous output.

We intentionally did not develop novel non-trivial architec-
tural tweaks for small performance improvements, as many
of them have been shown to be unnecessary and to not
generalize well to other datasets and tasks [29], [30]. We leave
systematic comparisons that explore other transfer learning
schemes, make use of slice-level annotations, and use clinical
features as model input for future work.

Radiologists can be aided in assessing CT scans on the
presence of COVID-19 by automatic COVID-19 grading sys-
tems. This paper advances and speeds up the development of
such systems in the following ways. Firstly, our findings aid in
advancing the performance of automated COVID-19 grading
systems and provide insight into the performance benefits of
several of their components. These insights primarily indicate
that future research and clinical applications should move
towards using 3D CNNs for COVID-19 grading in CT scans.
Secondly, the models and the automatic evaluation method
used in this paper have been made available on the online
Grand Challenge platform [32]. This allows researchers to
obtain and compare the performance of their COVID-19
grading and classification solutions to other solutions on the
platform. Thirdly, the output of all models used in this paper
adheres to the standardized CO-RADS reporting system to
facilitate easier integration into clinical workflow.
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